Equivalent conditions of complete moment convergence for extended negatively dependent random variables
نویسندگان
چکیده
In this paper, we study the equivalent conditions of complete moment convergence for sequences of identically distributed extended negatively dependent random variables. As a result, we extend and generalize some results of complete moment convergence obtained by Chow (Bull. Inst. Math. Acad. Sin. 16:177-201, 1988) and Li and Spătaru (J. Theor. Probab. 18:933-947, 2005) from the i.i.d. case to extended negatively dependent sequences.
منابع مشابه
The Almost Sure Convergence for Weighted Sums of Linear Negatively Dependent Random Variables
In this paper, we generalize a theorem of Shao [12] by assuming that is a sequence of linear negatively dependent random variables. Also, we extend some theorems of Chao [6] and Thrum [14]. It is shown by an elementary method that for linear negatively dependent identically random variables with finite -th absolute moment the weighted sums converge to zero as where and is an array of...
متن کاملStrong Convergence of Weighted Sums for Negatively Orthant Dependent Random Variables
We discuss in this paper the strong convergence for weighted sums of negatively orthant dependent (NOD) random variables by generalized Gaussian techniques. As a corollary, a Cesaro law of large numbers of i.i.d. random variables is extended in NOD setting by generalized Gaussian techniques.
متن کاملComplete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables under sub-linear expectation
In this paper, we study the complete convergence and complete moment convergence for weighted sums of extended negatively dependent (END) random variables under sub-linear expectations space with the condition of [Formula: see text], further [Formula: see text], [Formula: see text] ([Formula: see text] is a slow varying and monotone nondecreasing function). As an application, the Baum-Katz type...
متن کاملComplete Moment Convergence and Mean Convergence for Arrays of Rowwise Extended Negatively Dependent Random Variables
The authors first present a Rosenthal inequality for sequence of extended negatively dependent (END) random variables. By means of the Rosenthal inequality, the authors obtain some complete moment convergence and mean convergence results for arrays of rowwise END random variables. The results in this paper extend and improve the corresponding theorems by Hu and Taylor (1997).
متن کاملOn the Complete Convergence ofWeighted Sums for Dependent Random Variables
We study the limiting behavior of weighted sums for negatively associated (NA) random variables. We extend results in Wu (1999) and a theorem in Chow and Lai (1973) for NA random variables.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017